If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+520=0
a = -16; b = 0; c = +520;
Δ = b2-4ac
Δ = 02-4·(-16)·520
Δ = 33280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{33280}=\sqrt{256*130}=\sqrt{256}*\sqrt{130}=16\sqrt{130}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{130}}{2*-16}=\frac{0-16\sqrt{130}}{-32} =-\frac{16\sqrt{130}}{-32} =-\frac{\sqrt{130}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{130}}{2*-16}=\frac{0+16\sqrt{130}}{-32} =\frac{16\sqrt{130}}{-32} =\frac{\sqrt{130}}{-2} $
| -0.5x+1.1=-2.9-4.5x | | 2x+8=6x-15 | | 9f-30f=9 | | 3x2-2=25 | | 6c=32 | | 9k+7–k+4= | | 7x+36=3x+84 | | 9x+378=372 | | 4x+10-2=4(x+2) | | 6x+10=3x+43 | | 4x+15=2x+31 | | 4x+15=2x31 | | 4(a+2)=5(2a-4) | | f(8)=3(8)+1 | | x3-6=34 | | C=1.50t | | 3.5/18=z36 | | 8(x+12)=72 | | (x^2+5)(x^2+9)=0 | | 6y-17=55 | | 11+h=154 | | (x+5)(x^2+9)=0 | | 6x-x+52=-9+21 | | 2500=2000(1+0.11t) | | (11.5+x)÷2=18.7 | | x+4=x–223 | | 6=t÷25 | | 6w=76.33 | | 4x^+59x+172=0 | | 4x^2+59x+172=0 | | 2p+3(p+8)=0 | | A=(3.14)(5x-3) |